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We present the first direct measurement of the top-quark mass using tf events decaying in the
hadronic 7 + jets decay channel. Using data corresponding to an integrated luminosity of 2.2 fb~!
collected by the CDF II detector in pp collisions at /s = 1.96 TeV at the Fermilab Tevatron,

we measure the ¢ cross section, o, and the top-quark mass, Miop.

We extract Miop from a

likelihood based on per-event probabilities calculated with leading-order signal and background
matrix elements. We measure o, = 8.8 + 3.3 (stat) = 2.2 (syst) pb and Mop = 172.7 £ 9.3 (stat) =

3.7 (syst) GeV/c>.

PACS numbers: 14.65.Ha, 13.35.Dx

The mass of the top quark, M;.p, and the top-quark
pair production cross section, o;7, have been extensively
studied at both the Fermilab Tevatron and the Large
Hadron Collider at CERN [1-3]. However, final states
of the top-quark decay that include a tau lepton () are
relatively unexplored due to the difficulty of identifying
the tau and rejecting quantum chromodynamic (QCD)
processes that can mimic its hadronic decay mode. The
top quark and the tau belong to the heaviest third gen-
eration of standard model (SM) fermions and may play
a special role in electroweak symmetry breaking. Mea-
surements in these unexplored decay channels serve as
important tests of lepton universality, and discrepancies
from the SM expectation could point to new top-quark
sector physics.

In this Letter, we present the first direct measurement
of the top-quark mass in the hadronic 7 + jets decay
channel (7 + jets) [4]. We measure o7 and Miop us-
ing data corresponding to 2.2 fb™! of integrated lumi-
nosity collected by the CDF II detector [5] in pp colli-
sions at /s = 1.96 TeV at the Fermilab Tevatron. The
DO Collaboration previously measured o, in the 7 +
jets decay channel with data corresponding to 1 fb™* of
integrated luminosity to be 6.9 + 1.5 pb [6], assuming

Miop =170 GeV/ ¢?, and reached a signal purity of 52%.

Assuming three generations in the SM and a unitary
quark-mixing matrix, the top quark decays almost ex-
clusively to a W boson and b quark. We select pair-
produced top-quark events in which one of the W bosons
decays into a pair of light quarks and the other decays
to a tau and a neutrino. This decay channel represents
15.2% of the tf branching ratio and results in a final state
with a tau, a neutrino, two b quarks, and two light-flavor
quarks (u, d, or s). Although the tau can decay lep-
tonically to an electron (e) or muon (u) and a pair of
neutrinos, these events are difficult to differentiate from
electrons or muons from W boson decays. As a result,
we select events with the tau decaying to a neutrino and
a narrow jet of hadrons, which are usually charged and
neutral pions, that correspond to 9.8% of all ¢ decays.
We use an artificial neural network (NN) to reduce the
QCD multijet background contribution. The additional
neutrino produced in the tau decay complicates the tau
reconstruction. To solve this, we adapt a missing mass
calculator method [7] to the 7 + jets topology to infer
a unique solution for the neutrino four-momentum with
sufficient precision to reasonably reconstruct the tau. We
use a binned likelihood fit based on the predicted and ob-



served number of events to measure o,;. Then, to extract
M;op, we use a likelihood function built from signal and
background probabilities calculated with the predicted
differential cross sections for tt and W + four-parton pro-
duction, respectively.

The data used in this measurement are selected using
a multijet online selection (trigger) that requires at least
four calorimeter energy clusters with transverse energy
[8] (ET) greater than 15 GeV each and a total sum Er
of all clusters greater than 175 GeV [9]. Jets are recon-
structed by a cone algorithm that clusters energies in
calorimeter towers within a fixed cone size of AR = 0.4
[10] where AR = /An? + A¢? [8]. In the offline anal-
ysis, events are required to have exactly four jets with
Er > 20 GeV, missing transverse energy (Fr) greater
than 20 GeV, and a single hadronically-decaying tau se-
lected as described below. Jet energies are corrected for
nonlinearity of the detector response and multiple pp in-
teractions within the bunch crossing [11]. One of the
four jets must be identified as having originated from a
b quark (b-tagged) using a secondary vertex finding algo-
rithm [12]. Hadronically-decaying taus appear as narrow
jets with an odd number of tracks and low neutral pion
multiplicity. We select taus using a two-cones algorithm
[13]. The inner cone defining the signal region has a size
set to the lesser of 10° (0.17 rad) and (5 GeV)/E rad,
where E) is the energy of the calorimeter energy cluster
associated with the tau candidate. The second cone with
a size of 30° defines an isolation region outside of the
signal cone. A tau must have one or three tracks in the
signal region and no tracks in the isolation region. We
require the Ep of the tau energy cluster to exceed 20 GeV
and the Er of the visible tau to exceed 25 GeV, where
visible refers to the combination of the track and neutral
pion information. We require that the calorimeter energy
in the isolation region be less than 10% of the visible tau
energy. Finally, we veto events with an identified electron
or muon.

The dominant background for this analysis is high jet
multiplicity QCD events with a jet misidentified as a tau.
To reduce this background, we develop a NN to distin-
guish between tf — 7 + jets and QCD multijet events.
The NN is trained using QCD multijet events, obtained
from data by selecting events with a tau candidate with
at least one track in the isolation region and passing all
other selection requirements, and tf events generated us-
ing the PYTHIA Monte Carlo generator [14] coupled with
a GEANT [15] based CDF II detector simulation [16]. To
properly account for tau polarization effects, the tau de-
cays are modeled by the TAUOLA package [17]. The NN
uses eight variables that exploit the topological differ-
ences between QCD multijet and ¢ events including Fr
and the sum of the Er of various combinations of the tau
and jets [4]. After training the NN, we find good separa-
tion between QCD multijet and tf events. Optimal sig-
nal significance, defined as the number of expected signal

events divided by the square root of the total number of
observed events, is achieved by removing events associ-
ated to a NN value below 0.85. We initially select 162
events of which 41 events survive the 0.85 NN require-
ment. Due to the difficulty in simulating QCD multijet
events, b quark tagging algorithms, and the production of
heavy flavor quarks in association with W bosons, we es-
timate the background contributions with a data-driven
approach similar to that described in Ref. [12]. We use
the NN output distribution to fit the contributions of
the signal and background processes to the data. This
is done both before and after applying b-tagging require-
ments. Since most of the selected data events return a
NN value below 0.7, the fit is dominated by events outside
of the signal region. We begin by calculating the contri-
butions of the signal and each background process before
the b-tagging requirement is applied. The tt and elec-
troweak background contributions are determined from
simulation.

Diboson, single top-quark, and Z + jets production
are modeled using PYTHIA, MADEVENT [18], and ALPGEN
[19] respectively, with PYTHIA used for parton shower-
ing and underlying event generation. Each of these pro-
cesses’ contributions is set to its expectation based on
its respective theoretical cross section [20, 21], the to-
tal integrated luminosity of the data, and the acceptance
determined from simulation. The ¢¢ contribution is mod-
eled with PYTHIA and is similarly normalized using the
next-to-next-to-leading order SM #f cross section predic-
tion [22]. For all simulated events, a GEANT based sim-
ulation is used to model the CDF II detector response.
With these contributions known, we determine the con-
tributions from QCD multijet and W + jets events by
fitting the shape of the NN output distribution for each
component (with the previously calculated contributions
fixed) to the data before applying the NN selection and
b-tagging requirements. The QCD multijet sample is se-
lected from data as previously described while the W
+ jets events are modeled with ALPGEN similarly to Z
+ jets events. We fit these distributions with a binned
Poisson likelihood as seen in Fig. 1. The contribution
of QCD multijet events in the signal region is calculated
from this fit. All remaining events are assumed to come
from W + jets production.

For each process except QCD multijet events, the con-
tribution after applying the b-tagging requirement is cal-
culated by applying b-tagging efficiencies measured in
Ref. [12] to the initially calculated contribution. Incor-
rect tagging of light quarks and tagging of the b and ¢
quarks have inherently different uncertainties. To prop-
erly estimate uncertainties associated with the contribu-
tion of W + jets events, this contribution is divided into
W + light flavor (W+1f) and W + heavy flavor (Wb,
Wee, and We) parts with separately-estimated uncer-
tainties. To calculate the contribution from QCD mul-
tijet events, we apply the b-tagging requirement to the



TABLE I. Predicted number of selected 7 + jets candidate
events from each considered process after all selection re-
quirements are applied assuming o = 7.4 pb and M, =
172.5 GeéV/c®. The uncertainty is a combination of statistical
and systematic uncertainty.

Source Number of events
Diboson 0.19 £ 0.01
Single top quark 0.16 +0.01
Zbb 0.29 +0.04
Whb 0.6 £0.5
Wee 0.3+£0.3
We 0.2+0.1
WIf 0.5£0.6
QCD multijet 18.2+4.1
Total bkgd 20.4 £ 4.2
tt 18.2+28
Total predicted 38.6 £5.0
Observed 41

QCD multijet sample. We then combine ¢t and the other
background processes into a single sample with the rel-
ative contributions fixed to their calculated values. The
NN output distributions of these two samples are then
fit to the data selected with the b-tagging requirement,
and the contribution of QCD multijet events in the signal
region is derived from the result. Each process’s contri-
bution, assuming o = 7.4 pb and M., = 172.5 GeV/CQ,
is given in Table I. Of the 41 selected events, we expect
roughly 18 QCD multijet events and 18 ¢t events. From
simulation studies, we estimate that 76.5 & 0.5% of the
selected tt events correspond to a hadronic T + jets final
state. The other major contributions to the tf events are
all-hadronic t¢ decays (12.3 + 0.4%) and it — e + jets
(5.3 £ 0.3%).
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FIG. 1. Fit to the NN output shape before applying the b-
tagging requirement. The arrow marks the lower bound on
the signal region.

We measure o, using a likelihood function based on
a Poisson probability distribution comparing the num-
ber of observed (N,) and predicted (N,) events for a
given oy written as L = e"N»NVe /(N,!). We consider
the negative logarithm of this function over values of
o from 5 to 15 pb where N, is recalculated at each
point with the fraction of QCD multijet events kept con-
stant to the value calculated for o, = 7.4 pb. The re-
sult is fit with a 2nd order polynomial which is mini-
mized to extract the central value and statistical uncer-
tainty. The cross section value determined by the fit is
o = 8.8+ 3.3 (stat) pb.

The dominant sources of systematic uncertainty in-
clude the acceptance, selection efficiencies, background
estimate, and luminosity. For acceptance effects, we con-
sider uncertainties on the jet energy scale (JES) [11] (0.6
pb), parton showering models (0.5 pb), parton distri-
bution functions (PDF) (0.5 pb), initial and final state
radiation (ISR, FSR) (0.5 pb), and color reconnection
[23] (0.4 pb). We consider systematic uncertainties on
the efficiency measurements from the b-tagging (0.4 pb),
tau identification (0.2 pb), and trigger efficiency (0.1
pb) scale factors. The background systematics come
from the W + heavy flavor scale factor uncertainty [12]
(0.1 pb) and the QCD multijet contribution, which is
the dominant systematic uncertainty. We measure this
uncertainty (1.8 pb) by comparing the NN output dis-
tribution shapes of the QCD multijet events and data
dominated by QCD multijet events which are selected
by removing the Er requirement. Finally, the uncer-
tainty on the integrated luminosity is 6% [24] (0.5 pb).
Combining all these sources in quadrature results in the
total systematic uncertainty of 2.2 pb, a 25% uncer-
tainty. We measure o7 assuming Mo, = 172.5 GeV/ ?
to be 8.8 + 3.3 (stat) £ 2.2 (syst) pb, which is consistent
with the next-to-next-to-leading order SM prediction of
7457072 pb [22].

We calculate M;,p, from a likelihood function based on
probabilities corresponding to the signal and background
hypothesis for each event. These probabilities are calcu-
lated from the differential cross section for ¢# and W +
four-parton production, respectively. The method uses a
similar approach to the previous measurement in the e
and p + jets decay channels [25]. The signal probability
is based on a tt leading-order matrix element which as-
sumes ¢¢ production [26] and is calculated over 31 input
mass values ranging from 145 to 205 GeV/c2. Since it
does not depend on M, the background probability is
calculated once for each event using a W + four-parton
matrix element from the VECBOS [27] generator.

The tau decay adds an extra complication by introduc-
ing a second neutrino in the event. We reconstruct this
additional neutrino by adapting a method developed for
the reconstruction of a resonance decaying to 77 [7] to
the 7 4 jets topology. We find from simulation studies
of tt — 7 + jets events that the neutrino from the tau



decay is nearly collinear with the hadronic components
of the tau decay as their 6 and ¢ angles tend to agree
within 0.1 radians. Additionally, we find that the ¢ an-
gle of the neutrino from the W boson is within 1 radian
of the ¢ direction associated with the Fr. Simulation
studies show that these statements hold true in greater
than 99% of events. We introduce a four-dimensional
scan over the angles of both neutrinos restricting them
to the above ranges. Assuming the neutrino mass is neg-
ligible and that the W boson and tau have masses of
80.4 GreV/c2 and 1.777 GeV/(:27 respectively, we com-
pletely solve for the four-vector of each neutrino for each
set of angles in the scan. We then compare the pre-
dicted z- and y-components of the £t from the neutrino
solutions to the measured Kt components with Gaus-
sian probability functions and choose the set of angles
that returns the greatest probability. This method accu-
rately reconstructs the four-momentum of the neutrino
from the tau decay, but it does not perform as well with
the four-momentum of the neutrino from the W boson
decay. Therefore, we use the result of this method only
to determine the tau four-momentum in the event, while
the neutrino from the W boson decay is reconstructed in
the method as it would be for the e or u + jets channel
[25] by assuming the tf system is produced with no pr.
Each probability is calculated by integrating over the
differential cross section for the appropriate process:

p=2 [ @@ @W e pdade, ()

where do is the differential cross section, f is the parton
distribution function (PDF) for a quark with momentum
fraction of the incident proton ¢, & refers to observed
quantities, ¢ refers to parton level quantities, and W (Z, 7))
is the transfer function used to map Z to 4 based on sim-
ulation studies. The event probability is a sum of the
signal and background probabilities weighted by the sig-
nal and background fractions, respectively. To improve
the statistical uncertainty on the M;,, measurement, the
likelihood function includes a Gaussian constraint on the
background fraction set to 0.5 = 0.1 from Table I. We
evaluate the likelihood function for each of the 31 input
top-quark masses and fit the result with a second-order
polynomial to derive My, and its statistical uncertainty.
We calibrate the measurement on 21 simulated ¢ samples
covering a mass range of 155 to 195 GeV/cQ. The like-
lihood function and fit for the data before applying the
calibration functions can be seen in Fig. 2. We measure
Miop to be 172.7 4 9.3 (stat) GeV /c”.

The largest systematic uncertainty comes from the
JES and is calculated to be 3.4 GeV/cZ. We also con-
sider systematic uncertainties from the differences in par-
ton showering models (0.5 GeV/c?), color reconnection
(0.5 GeV/c?), ISR and FSR (0.3 GeV/c?), PDF’s (0.1
GeV/c?), and the uncertainty on the fraction of ¢f pairs
produced from gg fusion (0.2 GeV/ cz). The background

-log Likelihood

150 160 170 180 190 200
M,,, (GeV/c?)

FIG. 2. Negative log of the top-quark mass likelihood as a
function of M., for all data events. The calibration functions
have not yet been applied.

fraction uncertainty is measured by shifting each back-
ground source within its uncertainty from Table I (0.5
GeV/ cz). We consider uncertainties from different b-jet
fragmentation models and semileptonic branching ratios
for jets from b quarks as well as shifts in the energy scale
of these jets (0.4 GeV/c?). We also account for shifts
from the tau energy scale (0.2 GeV /c?). The pileup sys-
tematic uncertainty (1.0 GeV/c?) accounts for a known
mismodeling in the luminosity profile of the simulation.
Uncertainty due to local non-linearity of the method and
any assumptions used is estimated by shifting the cali-
bration function within its uncertainty (0.2 GeV /c?). We
take the remaining 0.14 GeV/ ¢’ uncertainty on the fit of
the mass residual (defined as the true mass subtracted
from the measured mass) across all 21 mass points as an
uncertainty on the limited size of the simulation sample.
We find Miqp, to be 172.74+9.3 (stat) £3.7 (syst) GeV/c®
in agreement with the most recent Tevatron combination
of 173.18 + 0.94 GeV /c” [3].

Using data corresponding to an integrated luminosity
of 2.2 fb_l, we have made the first direct measurement
of the top-quark mass in tt events identified as decaying
to a hadronic 7 + jets topology. Assuming a top-quark
mass of 172.5 GeV/cz, we find the tf pair production
cross section to be 8.8 £ 3.3 (stat) + 2.2 (syst + lumi)
pb. This value is consistent with the next-to-next-to-
leading order SM prediction [22] and recent measure-
ments [28], including the DO measurement in the same
decay channel [6]. We measure the top-quark mass to be
172.7 + 9.3 (stat) + 3.7 (syst) GeV/c” in agreement with
the Summer 2011 Tevatron top-quark mass combination
of 173.18 £ 0.94 GeV/c® [3]. The measurements made
in the 7 4 jets channel agree with current measurements
and predictions, thus confirming lepton universality. Ad-
ditionally, these measurements demonstrate that we can
do complex analyses with tau leptons even in a high jet



multiplicity environment at hadron colliders. This is par-
ticularly interesting at the LHC where new physics, e.g.
SUSY, could preferentially lead to final states with tau
leptons.
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